Part Number Hot Search : 
83058AGI MC10H121 G001I ST100 2SK2824 BDX77 74LCX374 00M000
Product Description
Full Text Search
 

To Download RP502Z264B-E2-F Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  rp502x series step-down dc/dc converter with synchronous rectifier no.ea-189-100617 1 outline the rp502x series are cmos-based step-down dc/dc converters with synchronous rectifier. each of these ics consists of an oscillator, a reference voltage unit, an error amplifier, a switching control circuit, a soft-start circuit, protection circuits, an uv lo circuit, and switching transistors. by adopting the synchronous rectification with built -in switching transistors, high effici ent step-down dc/dc converter can be composed of only an inductor and capacitors. as protection circuits, the current limit circuit and the la tch protection circuit are built into the ics. the current limit circuit controls the peak current of l x at each clock cycle. latch protection circuit maintains the built-in driver in off state if the load current exceeds the limit value for a certain period of time. to cancel the latch protection, disable the ics with a chip enable circuit and then enabl e it again or make the power supply voltage lower than uvlo. the setting voltage for the rp502x series is the output vo ltage fixed type with built-in feedback resistance that is adjustable in 0.1v step with the accuracy of 1.5% or 24mv. the packages for the ics are wlcsp-6-p2 (under development) and dfn1616-6, which enable the high-density mounting. the switching mode for the ics is selectable from the pwm/vfm auto switching type, wh ich achieves the high efficiency at the light load condition or pwm fixed type, which switches at the fixed frequency. features ? supply curre nt ......................................................typ. 750 a (at normal) typ. 180 a (at light road) ? input voltage range .............................................2.5v to 5.5v(v out 1.0v) 2.5v to 4.5v(v out <1.0v) ? absolute maximu m ratings ..................................6.0v ? output voltage range...........................................0.8v to 3.3v (0.1v steps) ? output voltage accuracy....................................... 1.5% (v out 1.6v) 24mv (v out <1.6v) ? oscillator frequen cy .............................................typ. 3.3mhz ? maximum duty ......................................................min. 100% ? built-in driver on resi stance ...............................typ. pch. 0.5 ? , nch. 0.5 ? (v in = 3.6v) ? uvlo detector thre shold.....................................typ. 2.2v ? soft start ti me.......................................................typ. 0.12ms ? lx current limi t.....................................................typ. 900ma(v out 1.2v) typ. 800ma(v out <1.2v) ? latch type protection circuit .................................typ. 1.5ms ? chip enable func tion............................................"h" active ? packages ..............................................................wlcsp-6-p2 (under development) , dfn1616-6 applications ? power source for battery-powered equipments. ? power source for hand-held communication equipments, cameras, vcrs, camcorders. ? power source for hdds, portable equipments.
rp502x 2 block diagrams rp502xxx1b rp502xxx2b switching control current protection soft start vref l x v out v in ce pgnd oscillato r pwm curren t feedback ram p compensation uvl o agnd chip enable s wit c hin g control curren t protecti on sof t start vref l x v out v in c e pgnd oscillator pw m current feedback ram p compensation uvl o agnd chi p enable
rp502x 3 rp502xxx3b rp502xxx4b s wit c hin g control curren t protecti on sof t start vref l x v out v in c e pgnd oscillator pw m current feedback ram p compensation uvlo agnd chi p enable s wit c hin g control curren t protecti on sof t start vref l x v out v in c e pgnd oscillator pw m current feedback ram p compensation uvlo agnd chi p enable
rp502x 4 selection guide in the rp502 series, output voltage, switching mode, and aut o discharge function for the ics are selectable at the user?s request. product name package quantity per reel pb free halogen free rp502zxx ? b-e2-f wlcsp-6-p2 (under development) 5,000 pcs yes yes rp502lxx ? b-tr dfn1616-6 5,000 pcs yes yes xx : the output voltage can be designated in the r ange of 0.8v(08) to 3.3v(33) in 0.1v steps ? 1 . (for other voltages, please refer to mark informations.) ? : the switching mode and auto discharge function can be designated as shown below. code pwm/vfm auto switching auto discharge function 1 yes no 2 no no 3 yes yes 4 no yes auto-discharge function quickly lowers t he output voltage to 0v, when the chip enable signal is switched from the active mode to the standby mode, by releasing the electric al charge accumulated in the external capacitor. ? 1) 0.05v step is also available as a custom code.
rp502x 5 pin configurations ? wlcsp-6-p2 (under development) ? dfn1616-6 mark side 6 5 4 1 2 3 bump side 6 5 4 1 2 3 top view 3 4 2 5 1 6 bottom view 1 6 2 5 3 4 ? pin descriptions ? wlcsp-6-p2 (under development) pin no symbol pin description 1 v out output pin 2 pgnd ground pin 3 l x l x switching pin 4 v in input pin 5 agnd ground pin 6 ce chip enable pin ("h" active) ? dfn1616-6 pin no symbol pin description 1 ce chip enable pin ("h" active) 2 agnd ground pin 3 v in input pin 4 l x l x switching pin 5 pgnd ground pin 6 v out output pin ? ) tab is gnd level. (they are connect ed to the reverse side of this ic.) the tab is better to be connected to the g nd, but leaving it open is also acceptable.
rp502x 6 absolute maximum ratings agnd=pgnd=0v symbol item rating unit v in input voltage -0.3 to 6.0 v v lx l x pin voltage -0.3 to v in + 0.3 v v ce ce pin input voltage -0.3 to 6.0 v v out output voltage -0.3 to 6.0 v i lx l x pin output current 900 ma power dissipation (wlcsp-6-p2 / under development ) ? 650 p d power dissipation (dfn1616-6) ? 640 mw ta operating temperature range -40 to 85 c tstg storage temperature range -55 to 125 c ? ) for power dissipation, please refer to package information. absolute maximum ratings electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime an d safety for both device and system using the device in the field. the functional operation at or over these absolute maximum ratings is not assured. recommended operating conditions (electrical characteristics) all of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. the semiconductor devic es cannot operate normally over the recommended operating conditions, even if when they are used over such c onditions by momentary electr onic noise or surge. and the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.
rp502x 7 electrical characteristics ? rp502xxxxb (ta = 25 c) symbol item conditions min. typ. max. unit v out 1.0 2.5 5.5 v in operating input voltage v out <1.0 2.5 4.5 v v out 1.6 -1.5% +1.5% v out output voltage v in = v ce =3.6v or v set +1v v out <1.6 -0.024 +0.024 ? v out / ? ta output voltage temperature coefficient -40 c < = < = c 100 ppm/ c fosc oscillator frequency v in = v ce =3.6v or v set +1v 2.64 3.3 3.96 mhz i dd1 supply current 1 v in = v ce =5.5v, v out =0v 750 900 a pwm/vfm 180 240 i dd2 supply current 2 v in = v ce = v out =5.5v pwm fixed 750 900 a istandby standby current v in = 5.5v, v ce = 0v 0 5 a i ceh ce ?h? input current v in = v ce = 5.5v -1 0 1 a i cel ce ?l? input current v in = 5.5v, v ce = 0v -1 0 1 a i vouth v out ?h? input current ? 1 v in = v out = 5.5v, v ce = 0v -1 0 1 a i voutl v out ?l? input current v in = 5.5v, v ce = v out = 0v -1 0 1 a r low low output nch tr. on resistance ? 2 v in = 3.6v, v ce =0v 40 ? i lxleakh l x leakage current ?h? v in = v lx = 5.5v, v ce = 0v -1 0 1 a i lxleakl l x leakage current ?l? v in = 5.5v, v ce = v lx = 0v -5 0 5 a v ceh ce input voltage ?h? v in = 5.5v 1.0 v v cel ce input voltage ?l? v in = 2.5v 0.4 v r onp on resistance of pch tr. v in = 3.6v, i lx = -100ma 0.5 ? r onn on resistance of nch tr. v in = 3.6v, i lx = -100ma 0.5 ? maxduty maximum duty 100 % t start soft-start time v in = v ce =3.6v or v set +1v 120 150 s v out 1.2 600 900 i lxlim l x current limit v in = v ce =3.6v or v set +1v v out <1.2 500 800 ma t prot protection delay time v in = v ce =3.6v or v set +1v 0.5 1.5 5 ms v uvlo1 uvlo detector threshold v in = v ce 2.1 2.2 2.3 v v uvlo2 uvlo released voltage v in = v ce 2.2 2.3 2.4 v test circuit is "open loop" and agnd=pgnd=0v unless otherwise noted. ? 1) without auto discharge function ? 2) with auto discharge function
rp502x 8 test circuits rp502x se rie s v in ce l x v out pgnd a gnd osci lloscope rp502x se rie s v in ce l x v out pgnd a gnd oscilloscope output voltage oscillator frequency rp502x se rie s v in ce l x v out pgnd a gnd a rp502x se rie s v in ce l x v out pgnd a gnd a supply current 1,2 standby current rp502x se rie s v in ce l x v out pgnd a gnd a rp502x se rie s v in ce l x v out pgnd a gnd a ce "h"/"l" input current v out "h"/"l" current
rp502x 9 r p502x se rie s v in ce l x v out pgnd a gnd a rp502x se rie s v in ce l x v out pgnd a gnd oscilloscope l x leakage current ce input voltage rp502x se rie s v in ce l x v out pgnd a gnd v oscilloscope rp502x se rie s v in ce l x v out pgnd a gnd oscilloscope pch ? nch tr. on resistance / output delay for protection / l x current limit soft-start time rp502x se rie s v in ce l x v out pgnd a gnd oscilloscope uvlo detector threshold ? released voltage
rp502x 10 typical application symbol parts recommendation c in 4.7 f ceramic jmk107bj475ma (taiyo yuden) c out 4.7 f ceramic jmk107bj475ma (taiyo yuden) l 2.2 h nr 3010t 2r2m (taiyo yuden) ,1.0 h mips 2520 d1r0 (fdk) v in ce l x v out pgnd agnd v in c in 4.7 f c out 4.7 f v out 2.2 h/1.0 h rp502x se ries
rp502x 11 technical notes when using the r502x series, consider the following points: ? set agnd in the same level as pgnd. ? set external components such as an inductor, c in , and c out as close as possible to the ics. v in , c in and gnd have to be wired as close as possible. if the impedances of v in line and gnd line are high, the switching current will fluctuate the electric potential of the inside the ics. as a result, the ope ration may become unstable. the impedances of power supply line and gnd line must be as low as possible. please note that a large current caused by the switching current flows into v in , gnd, inductor, l x , and v out . separate the wiring between v out pin and inductor from the wiring of load. ? for c in , use a ceramic capacitor with a low esr. the recommended condenser capacity for c in is 4.7f or more. also, the recommended condenser capacity for c out is 4.7f. ? choose an inductor from the range of 1.0 to 2.2h. the internal phase compensation has been determined based on the above-mentioned inductor value and the c out value. for stable operatio n, these conditions are necessary. choose an inductor that is low dc re sistance, has enough permissive current, and is strong against magnetic saturation. decide the inductance value with consideration of the load current under the condition of use. if the inductance value is low, the peak value of l x current may increase along with the increase of the load current. as a result, the peak value of l x may reach to the ?l x limit current? and may trigger the overcurrent protection circuit. ? please note that overcurrent protection circuit may be affected by self-heating and heat radiation environment. ? the performance of power source circuits using these ics largely depends upon the peripheral circuits. pay attention to the setting of the peripheral components. in particular, when designing the peripheral circuit, the constant values (voltage, cu rrent and power) for each part, pcb pattern and the ics should not be exceeded.
rp502x 12 operation of step-down dc/dc converter and output current the step-down dc/dc converter charges energy in t he inductor when the lx transistor is turned on, and discharges the energy when the lx transistor is turned off. the step-down dc/dc converter also controls with the less energy loss and supplies the lower output volt age than the input voltage. the operation of the dc/dc converter will be explained wi th the following diagrams: pch t r l nch t r v in i1 v out cl i2 gnd t 1/fosc ton toff topen ilmin ilmax il i1 i2 ? step 1 : pch tr. turns on and current il (=i1) flows. then, l and cl are charged with energy. at this moment, il (=i1) increases from ilmin (=0) to ilmax in pr oportion to the on-time period (ton) of pch tr. ? step 2 : when pch tr. turns off, synchronous rectifier nch tr. turns on and il(=i2) flows in order to maintain il at ilmax. ? step 3: il (=i2) starts to decrease gradually when topen time period starts. il reaches to ilmin (il=ilmin=0) when topen time period ends and then nch tr. turns o ff. in the continuous mode, toff time period runs out before il becomes ilmin (il=il min=0). the next cycle starts. pch tr. turns on and nch tr, turns off. since toff time period runs out befor e il becomes ilmin (il=ilmin=0), il min (>0) is still remaining. in this case, il starts increa sing from ilmin (>0). in the case of pwm control system, the output voltage is maintained constant by keeping the switching time (fosc) per unit constant, and by c ontrolling the on-time period (ton). when the step-down operation is constant and stable, as shown in the above ?inductor current?, the maximum inductor current (ilmax) will be same as the on-time period of pch tr. (ton) and the minimum inductor current (ilmin) will be same as the on-ti me period of pch tr. (toff). the difference between ilmax and ilmin is described as i: ? i = ilmax ? ilmin = v out x topen / l = (v in ? v out ) x ton / l ....................................equat ion 1 wherein, t = 1 / fosc = ton + toff duty (%)= ton / t x 100 = ton x fosc x 100 topen < = toff in equation 1, ?v out x topen / l? shows the amount of current change at the on-time. ?(v in ? v out ) x ton / l? shows the amount of current change at the off-time?.
rp502x 13 discontinuous mode and continuous mode as the following diagram show s, when the output current (i out ) is relatively small, topen will be smaller than toff (topen < toff). in this case, the all energy char ged in the inductor during the time period of ton will be discharged during the time period of tof f. as a result, il will be ilmin (=0). if i out is gradually increased, eventually topen will be equal to toff (topen=toff). if i out is further increased, ilmin will be larger than zero (ilmin>0). the former mode (topen rp502x 14 output current and selecti on of external components the relation between the output current and external components is as follows: when pch tr. of l x is turned on: (ripple current p-p value is described as i rp , on resistances of pch tr. and nch tr. are respectively described as r onp and r onn . also, the dc resistor of the inductor is described as r l .) the time period of l x pch tr. being ?on? is described as ton. v in = v out + (r onp + r l ) x i out + l x i rp / ton ...............................................................e quation 3 the time period of lx pch tr. being "off" is described as toff. (nch tr. is "on"): l x irp / toff = r onn x i out + v out + r l x i out .............................................................equat ion 4 substitute equation 4 into equation 3 to solve for on duty of pch tr.: (d on = ton / (toff + ton). d on = (v out + r onn x i out + r l x i out ) / (v in + r onn x i out ? r onp x i out ) ....................equation 5 ripple current is solved by the following equation: i rp = (v in ? v out ? r onp x i out ? r l x i out ) x d on / fosc / l ..........................................equat ion 6 wherein, peak current that flows through l and l x tr. is solved by the following equation: ilxmax = i out + i rp / 2...................................................................................................equation 7 it is necessary to consider ilxmax when deciding t he input/output conditions and selecting the peripheral components. ? the above calculation is based on the ideal operation of the ics in continuous mode.
rp502x 15 timing chart (1) soft-start time ? in the case of starting the ics with ce the ics start to operate when the ce pin voltage (v ce ) exceeds the threshold voltage. the threshold voltage is set between ce ?h? input voltage (v ceh ) and ce ?l? input voltage (v cel ). when the ics start to operate, the soft-start circuit also starts to operate. after a certain period of time, the reference voltage (v ref ) of the inside the ics gradually rise up to the specified value. v ceh soft-start time ic internal voltage reference v cel threshold level l x voltage (v ce ) (v ref ) soft-start circuit starts to operate (v lx ) influences by power supply, load current, external components (v out ) output voltage ce pin input voltage operate with pwm mode during the soft-start time soft-start time is the time period from when the so ft-start circuit started to when the reference voltage reached to the specified value. ? soft-start time may not always equal to t he actual start-up time of dc/dc converter. start-up peed could be affected by the power supply capa city, the output current value, the inductor value and capacitor value. ? in the case of starting with power supply after starting up with power supply, the ics starts to operate when the input voltage (v in ) exceeds the uvlo released voltage (v uvl02 ). the soft-start circuit starts to operate and then the reference voltage (v ref ) of the inside the ics gradually rise up to the specified value. soft-start time is the time period from when the so ft-start circuit started to when the reference voltage reached to the specified value. output voltage input voltage v uvlo2 ic internal voltage reference v uvlo1 l x voltage set v out set v out soft-start time influences by power supply, load current, external components operate with pwm mode during the soft-start time (v out ) (v in ) (v ref ) (v lx ) ? the start-up speed of the output voltage coul d be affected by the following elements. (a) the start-up speed of the input voltage (v in ), which is determined by the power supply for the ics and also by the input capacitor (c in ). (b) the output capacitor (c out ) value and the output current value.
rp502x 16 (2) under voltage lockout (uvlo) circuit the step-down dc/dc converter stops the sw itching operation if the input voltage (v in ) becomes lower than the setting voltage (set v out ). as a result, the output voltage (v out ) gradually drops according to the input voltage (v in ). if the input voltage drops furthermore and becomes lower than uvlo detector threshold (v uvl01 ), the under voltage lockout circuit (uvlo) starts to operate. the internal reference voltage of the ics (v ref ) stops and the output voltage drops according to the load. to restart the operation, the input voltage (v in ) needs to be raised higher than the uvlo released voltage (v uvl02 ). the timing chart below shows that the operation with varied input voltages (v in ). v uvlo2 v uvlo1 set v out set v out output voltage input voltage ic internal voltage reference l x voltage soft-start time influences by power supply, load current, external components (v out ) (v in ) (v ref ) (v lx ) * the start-up speeds of v out at operation and recovery or the defaul t voltage and the output current of c out . could affect on the waveform in the above chart. theref ore, the actual waveform could be slightly different from the waveform in the above chart.
rp502x 17 (3) overcurrent protection circuit, latch type protection circuit overcurrent protection circuit superv ises the peak current of the inductor (the current passing through pch tr.) at each switching cycle. if the peak current exceeds the l x current limit (i lxlim ), the overcurrent protection circuit turns off the pch transistor. the l x current limit of the rp502x series is set at typ. 900ma (v out 1.2v), and typ. 800ma (v out <1.2v). latch type protection circuit latches t he built-in driver in off state to stop the operation of the ics if the overcurrent status continues more than the protection delay time (tprot). ? l x limit current (i lxlim ) and the protection delay time (tprot) c ould be easily affected by self-heating and ambient environment. the drastic drop of input voltage (v in ) or the unstable input voltage caused by the short-circuiting in the output (v out ) may affect on the protection operation and the delay time. protection delay time (t prot ) l x current limit (i lxlim ) l x current pch tr. current l x voltage (v lx ) to release the latch type protection circuit, reset the ics by inputting ?l? into ce pin or make the input voltage lower than the uvlo detector threshold (v uvl01 ). as the following timing chart shows, the changing process of input voltage flows as follows: start-up, stable operation, high load condition, ce reset, stabl e operation, input voltage drop, input voltage recovery, and stable operation. if the ics enters the high load condition due to short-circui t or such, after the protection delay time (tprot), the built-in driver is latched in off state. v lx becomes ?l? and then the output voltage turns off. there are two ways of releasing the latch type protection: ce reset and uvlo reset. (1) ce reset makes the ce signal to ?l? once and then turns the ce signal back to ?h? again. (2) uvlo rest makes the input voltage lower than the uvlo voltage (v uvl01 ). input voltage (v in ) set v out uvlo detect voltage (v uvlo1 ) ce pin input voltage (v ce ) set v out threshold level l x voltage (v lx ) set v out output voltage (v out ) uvlo release voltage (v uvlo2 ) (1) (2) soft-start time set v out soft-start time soft-start time stable operation protection delay time protection delay time uvlo reset ce reset latch-type protection latch-type protection stable operation stable operation
rp502x 18 typical characteristics 1 ) ?R rp502x081b/083b rp502x121b/123b rp502x181b/183b rp502x291b/293b rp502x182b/184b rp502x332b/334b 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 1 10 100 1000 output current i out (ma) output voltage v out (v) vin=3.6v vin=4.5v 1.100 1.125 1.150 1.175 1.200 1.225 1.250 1.275 1.300 1 10 100 1000 output current i out (ma) output voltage v out (v) vin=3.6v vin=5.0v 1.700 1.725 1.750 1.775 1.800 1.825 1.850 1.875 1.900 1 10 100 1000 output current i out (ma) output voltage v out (v) vin=3.6v vin=5.0v 1.700 1.725 1.750 1.775 1.800 1.825 1.850 1.875 1.900 1 10 100 1000 output current i out (ma) output voltage v out (v) vin=3.6v vin=5.0v 3.200 3.225 3.250 3.275 3.300 3.325 3.350 3.375 3.400 1 10 100 1000 output current i out (ma) output voltage v out (v) vin=4.3v vin=5.0v 2.800 2.825 2.850 2.875 2.900 2.925 2.950 2.975 3.000 1 10 100 1000 output current i out (ma) output voltage v out (v) vin=3.9v vin=5.0v 1) output voltage vs. output current
rp502x 19 2 ) ?R?R rp502x121b/123b rp502x181b/183b rp502x291b/293b rp502x182b/184b 3 ) ?R?? rp502x332b/334b rp502x16xb v in =3.6v 1.100 1.125 1.150 1.175 1.200 1.225 1.250 1.275 1.300 2.5 3.0 3.5 4.0 4.5 5.0 5.5 input voltage v in (v) output voltage v out (v) iout=1ma iout=50ma iout=250ma 2.800 2.825 2.850 2.875 2.900 2.925 2.950 2.975 3.000 3.4 3.9 4.4 4.9 5.4 input voltage v in (v) output voltage v out (v) iout=1ma iout=50ma iout=250ma 3.200 3.225 3.250 3.275 3.300 3.325 3.350 3.375 3.400 3.8 4.3 4.8 5.3 input voltage v in (v) output voltage v out (v) iout=1ma iout=50ma iout=250ma 1.500 1.525 1.550 1.575 1.600 1.625 1.650 1.675 1.700 -50 -25 0 25 50 75 100 temperature ta(c) output voltage v out (v) vout=1.6v 1.700 1.725 1.750 1.775 1.800 1.825 1.850 1.875 1.900 2.5 3.0 3.5 4.0 4.5 5.0 5.5 input voltage v in (v) output voltage v out (v) iout=1ma iout=50ma iout=250ma 1.700 1.725 1.750 1.775 1.800 1.825 1.850 1.875 1.900 2.5 3.0 3.5 4.0 4.5 5.0 5.5 input voltage v in (v) output voltage v out (v) iout=1ma iout=50ma iout=250ma 2) output voltage vs. input voltage 3) output voltage vs. temperature
rp502x 20 4 ) ? rp502x081b/083b rp502x121b/123b rp502x181b/182b rp502x291b/293b rp502x182b/184b rp502x332b/334b 20 30 40 50 60 70 80 90 100 1 10 100 1000 output current i out (ma) efficiency (%) vin=3.6v vin=4.5v 20 30 40 50 60 70 80 90 100 1 10 100 1000 output current i out (ma) efficiency (%) vin=3.6v vin=5.0v 20 30 40 50 60 70 80 90 100 1 10 100 1000 output current i out (ma) efficiency (%) vin=3.6v vin=5.0v 20 30 40 50 60 70 80 90 100 1 10 100 1000 output current i out (ma) efficiency (%) vin=3.6v vin=5.0v 20 30 40 50 60 70 80 90 100 1 10 100 1000 output current i out (ma) efficiency (%) vin=4.3v vin=5.0v 20 30 40 50 60 70 80 90 100 1 10 100 1000 output current i out (ma) efficiency (%) vin=3.9v vin=5.0v 4 ) efficienc y vs. output current
rp502x 21 5 ) su pp l y current 1 , 2 vs.tem p erature 6 ) suppl y current 1, 2 vs. input volta ge rp502x15xb rp502x15xb v in =5 .5v 7) dc/dc output waveform rp502x081b/083b rp502x081b/083b rp502x121b/123b rp502x121b/123b 0 100 200 300 400 500 600 700 800 900 1000 -50 -25 0 25 50 75 100 temperature ta (c) supply current (a) idd1 idd2 0 100 200 300 400 500 600 700 800 900 1000 2.5 3.5 4.5 5.5 input voltage v in (v) supply current (a) idd1 idd2 v in =3.6v,i out =1ma 0.00 0.02 0.04 0.06 0.08 0.10 0 100 200 300 400 ti m e t ( s ) out put ripple volt age(ac) vri ppl e (v) -100 0 100 inductor current il (ma) output voltage il v in =3.6v,i ou t =25 0m a 0.00 0.02 0.04 0.06 0.08 0.10 0246810 time t (s) out put ripple voltage(ac) vri ppl e (v) 0 100 200 300 400 induct or current il (ma) output voltage il v in =3.6v,i out =1ma 0.00 0.02 0.04 0.06 0.08 0.10 0 100 200 300 400 ti m e t ( s ) out put ripple volt age(ac) vri ppl e (v) -100 0 100 inductor current il (ma) output voltage il v in =3.6v,i ou t =25 0m a 0.00 0.02 0.04 0.06 0.08 0.10 0246810 time t (s) out put ripple voltage(ac) vri ppl e (v) 0 100 200 300 400 inductor current il (ma) output voltage il
rp502x 22 rp502x181b/183b rp502x181b/183b rp502x182b/184b rp502x182b/184b rp502x332b/334b rp502x332b/334b v in =3.6v,i out =1ma 0.00 0.02 0.04 0.06 0.08 0.10 0 100 200 300 400 time t (s) output ripple voltage(ac) vripple (v) -100 0 100 inductor current il (ma) output voltage il v in =3.6v,i out =250ma 0.00 0.02 0.04 0.06 0.08 0.10 0246810 time t (s) output ripple voltage(ac) vripple (v) 0 100 200 300 400 inductor current il (ma) output voltage il v in =3.6v,i out =1ma 0.00 0.02 0.04 0.06 0.08 0.10 0.00.51.01.52.0 time t (s) output ripple voltage(ac) vripple (v) -100 0 100 inductor current il (ma) output voltage il v in =3.6v,i out =250ma 0.00 0.02 0.04 0.06 0.08 0.10 0246810 time t (s) output ripple voltage(ac) vripple (v) 0 100 200 300 400 inductor current il (ma) output voltage il v in =5.0v,i out =1ma 0.00 0.02 0.04 0.06 0.08 0.10 0.00.51.01.52.0 time t (s) output ripple voltage(ac) vripple (v) -100 0 100 inductor current il (ma) output voltage il v in =5.0v,i out =250ma 0.00 0.02 0.04 0.06 0.08 0.10 0246810 time t (s) output ripple voltage(ac) vripple (v) 0 100 200 300 400 inductor current il (ma) output voltage il
rp502x 23 8) oscillator frequency vs. temperature 9) oscillator frequency vs. input voltage rp502x12xb rp502x12xb v in =3.6v,i out =250 a 10) soft-start time vs. temperature rp502x15xb 11) uvlo detector threshold / released voltage vs. temperature rp502x15xb rp502x15xb i out =250 a uvlo detector threshold released voltage 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 -50 -25 0 25 50 75 100 temperature ta (c) frequency fosc (mhz) vin=3. 6v 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 2.5 3.5 4.5 5.5 input voltage v in (v) frequency fosc (mhz) -40c 25c 85c 80 90 100 110 120 130 140 -50-25 0 25 50 75100 temperature ta (c) soft start time tstart (s) 2.1 2.2 2.3 2.4 -50-25 0 25 50 75100 temperature ta (c) uvlo voltage v uvlo1 (v) 2.1 2.2 2.3 2.4 -50 -25 0 25 50 75 100 temperature ta(c) uvlo voltage v uvlo2 (v)
rp502x 24 12) ce input voltage vs. temperature rp502x16xb rp502x16xb v in =5 .5v v in =2.5v 13) l x current limit vs. temperature rp502x15xb 14) nch tr. on resistance vs. temperature 15) pch tr. on resistance vs.temperature ce "h" input voltage ce "l" input voltage 0.0 0.2 0.4 0.6 0.8 1.0 -50-25 0 25 50 75100 temperature ta (c) ce input voltage v ce (v) 0.0 0.2 0.4 0.6 0.8 1.0 -50-25 0 25 50 75100 temperature ta(c) ce input voltage v ce (v) 800 850 900 950 1000 1050 1100 -50-250 255075100 temperature ta (c) l x current limit ilim (ma) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 -50-25 0 25 50 75100 temperature ta (c) nch tr . onresistance r on ( ? ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 -50 -25 0 25 50 75 100 temperature ta(c) nch tr . onresistance r on ( ? )
rp502x 25 16 ) ce rp502x081b/083b rp502x121b/123b rp502x181b/183b rp502x291b/293b rp502x182b/184b rp502x332b/334b v in =3.6v,r out =1k ? 0.0 0.2 0.4 0.6 0.8 1.0 0 100 200 300 400 time t (s) output voltage v out (v) 0 3 6 ce input voltage v ce (v) ce input output voltage v in =3.6v,r out =1k ? 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 100 200 300 400 time t (s) output voltage v out (v) 0 3 6 ce input voltage v ce (v) ce input output voltage v in =5.0v,r out =1k ? 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 100 200 300 400 time t (s) output voltage v out (v) 0 3 6 ce input voltage v ce (v) ce input output voltage v in =3.6v,r out =1k ? 0.0 0.5 1.0 1.5 2.0 0 100 200 300 400 time t (s) output voltage v out (v) 0 3 6 ce input voltage v ce (v) ce input output voltage v in =5.0v,r out =1k ? 0.0 1.0 2.0 3.0 0 100 200 300 400 time t (s) output voltage v out (v) 0 3 6 ce input voltage v ce (v) ce input output voltage v in =3.6v,r out =1k ? 0.0 0.5 1.0 1.5 2.0 0 100 200 300 400 time t (s) output voltage v out (v) 0 3 6 ce input voltage v ce (v) ce input output voltage 16) turn on speed with ce pin
rp502x 26 17) load transient response rp502x081b/083b rp502x081b/083b v in =3.6v v in =3.6v rp502x081b/083b rp502x081b/083b v in =3.6v v in =3.6v rp502x121b/123b rp502x121b/123b v in =3.6v v in =3.6v 0.70 0.75 0.80 0.85 0 20406080100 time t (s) output voltage v out (v) 0 200 400 out put current i out (ma) output current 1ma --> 300ma output voltage 0.70 0.75 0.80 0.85 0.90 0 200 400 600 800 1000 time t (s) out put voltage v out (v) 0 200 400 output current i out (ma) output current 300ma --> 1ma output voltage 0.70 0.75 0.80 0.85 0 20406080100 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 200ma --> 500ma output voltage 0.70 0.75 0.80 0.85 0.90 0 200 400 600 800 1000 time t (s) out put voltage v out (v) 0 200 400 600 output current i out (ma) output current 500ma --> 200ma output voltage 1.10 1.15 1.20 1.25 0 20406080100 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 1ma --> 300ma output voltage 1.10 1.15 1.20 1.25 1.30 0 200 400 600 800 1000 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 300ma --> 1ma output voltage
rp502x 27 rp502x121b/123b rp502x121b/123b v in =3.6v v in =3.6v rp502x181b/183b rp502x181b/183b v in =3.6v v in =3.6v rp502x181b/183b rp502x181b/183b v in =3.6v v in =3.6v 1.10 1.15 1.20 1.25 0 20 40 60 80 100 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 200ma --> 500ma output voltage 1.10 1.15 1.20 1.25 1.30 0 200 400 600 800 1000 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 500ma --> 200ma output voltage 1.70 1.75 1.80 1.85 1.90 0 20 40 60 80 100 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 1ma --> 300ma output voltage 1.70 1.75 1.80 1.85 1.90 0 200 400 600 800 1000 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 300ma --> 1ma output voltage 1.70 1.75 1.80 1.85 1.90 0 20 40 60 80 100 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 200ma --> 500ma output voltage 1.70 1.75 1.80 1.85 1.90 0 20406080100 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 500ma --> 200ma output voltage
rp502x 28 rp502x182b/184b rp502x182b/184b v in =3.6v v in =3.6v rp502x182b/184b rp502x182b/184b v in =3.6v v in =3.6v rp502x332b/334b rp502x332b/334b v in =5.0v v in =5.0v 1.70 1.75 1.80 1.85 1.90 0 20 40 60 80 100 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 1ma --> 300ma output voltage 1.70 1.75 1.80 1.85 1.90 0 200 400 600 800 1000 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 300ma --> 1ma output voltage 1.70 1.75 1.80 1.85 1.90 0 20 40 60 80 100 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 200ma --> 500ma output voltage 1.70 1.75 1.80 1.85 1.90 020406080100 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 500ma --> 200ma output voltage 3.10 3.15 3.20 3.25 3.30 3.35 0 20 40 60 80 100 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 1ma --> 300ma output voltage 3.10 3.15 3.20 3.25 3.30 3.35 0 200 400 600 800 1000 time t (s) output voltage v out (v) 0 200 400 output current i out (ma) output current 300ma --> 1ma output voltage
rp502x 29 rp502x332b/334b rp502x332b/334b v in =5.0v v in =5.0v 3.10 3.15 3.20 3.25 3.30 3.35 0 20 40 60 80 100 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 200ma --> 500ma output voltage 3.10 3.15 3.20 3.25 3.30 3.35 020406080100 time t (s) output voltage v out (v) 0 200 400 600 output current i out (ma) output current 500ma --> 200ma output voltage
3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?4ijo:plpibnbp$?df *oufsobujpobm4bmft
 4ijo:plpibnb ,piplvlv :plpibnb$juz ,bobhbxb +bqbo 1ipof 'by  3*$0)&6301& /&5)&3-"/%4
#7 ?4fnjdpoevdups4vqqpsu$fousf 1spg8),fftpnmbbo %-"ntufmwffo 5if/fuifsmboet 10#py "$"ntufmwffo 1ipof 'by  3*$0)&-&$530/*$%&7*$&4,03&"$p -ue qpps )bftvohcvjmejoh  %bfdijepoh (bohobnhv 4fpvm ,psfb 1ipof 'by  3*$0)&-&$530/*$%&7*$&44)"/()"*$p -ue 3ppn /p#vjmejoh #j#p3pbe 1v%poh/fxejtusjdu 4ibohibj  1fpqmft3fqvcmjdpg$ijob 1ipof 'by  3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?5bjqfjp$?df 3ppn ' /p )fohzboh3e 5bjqfj$juz 5bjxbo 30$
1ipof 'by  iuuqxxxsjdpidpn-4* 5ifqspevdutboeuifqspevdutqfdjpdbujpoteftdsjcfejouijtepdvnfoubsftvckfduupdibohfps ejtdpoujovbujpopgqspevdujpoxjuipvuopujdfgpssfbtpot tvdibtjnqspwfnfou5ifsfgpsf cfgpsf efdjejohupvtfuifqspevdut qmfbtfsfgfsup3jdpitbmftsfqsf tfoubujwftgpsuifmbuftu jogpsnbujpouifsfpo 5ifnbufsjbmtjouijtepdvnfounbzopucfdpqjfepspuifsxjtfsfqspevdfejoxipmfpsjoqbsu xjuipvuqsjpsxsjuufodpotfoupg3jdpi 1mfbtfcftvsfupublfbozofdfttbszgpsnbmjujftvoefssfmfwboumbxtpssfhvmbujpotcfgpsf fyqpsujohpspuifsxjtfubljohpvupgzpvsdpvouszuifqspevdut psuifufdiojdbmjogpsnbujpo eftdsjcfeifsfjo 5ifufdiojdbmjogpsnbujpoeftdsjcfejouijtepdvnfoutipxtuzqjdbmdibsbdufsjtujdtpgboe fybnqmfbqqmjdbujpodjsdvjutgpsuifqspevdut5ifsfmfbtfpgt vdijogpsnbujpojtopuupcf dpotusvfebtbxbssbouzpgpsbhsboupgmjdfotfvoefs3jdpit psbozuijseqbsuztjoufmmfduvbm qspqfsuzsjhiutpsbozpuifssjhiut  5ifqspevdutmjtufejouijtepdvnfoubsfjoufoefeboeeftjhofe gpsvtfbthfofsbmfmfduspojd dpnqpofoutjotuboebsebqqmjdbujpot p$?dffrvjqnfou ufmfdpnnvo jdbujpofrvjqnfou  nfbtvsjohjotusvnfout dpotvnfsfmfduspojdqspevdut bnvtfnfou frvjqnfoufud
5iptf dvtupnfstjoufoejohupvtf bqspevdujobobqqmjdbujposfrvjsjohfyusfnfrvbmjuzboesfmjb cjmjuz  gpsfybnqmf jobijhimztqfdjpdbqqmjdbujpoxifsfuifgbjmvsf psnjtpqfsbujpopguifqspevdu dpvmesftvmujoivnbojokvszpsefbui bjsdsbgu tqbdfwfijdmf ovdmfbssfbdupsdpouspmtztufn  usb$?ddpouspmtztufn bvupnpujwfboe usbotqpsubujpofrvjqnfou dpncvtujpofrvjqnfou tbgfuz efwjdft mjgftvqqpsutztufnfud
tipvmepstudpoubduvt 8fbsfnbljohpvsdpoujovpvtf$?psuupjnqspwfuifrvbmjuzboesfmjbcjmjuzpgpvsqspevdut cvu tfnjdpoevdupsqspevdutbsfmjlfmzupgbjmxjuidfsubjoqspcbcjm juz*opsefsupqsfwfoubozjokvszup qfstpotpsebnbhftupqspqfsuzsftvmujohgspntvdigbjmvsf dvt upnfsttipvmecfdbsfgvmfopvhi upjodpsqpsbuftbgfuznfbtvsftjouifjseftjho tvdibtsfevoeb odzgfbuvsf psfdpoubjonfou gfbuvsfboegbjmtbgfgfbuvsf8fepopubttvnfbozmjbcjmjuz pssftqpotjcjmjuzgpsbozmpttps ebnbhfbsjtjohgspnnjtvtfpsjobqqspqsjbufvtfpguifqspevdut  "oujsbejbujpoeftjhojtopujnqmfnfoufejouifqspevduteftdsjcfejouijtepdvnfou  1mfbtfdpoubdu3jdpitbmftsfqsftfoubujwfttipvmezpvibwfboz rvftujpotpsdpnnfout dpodfsojohuifqspevdutpsuifufdiojdbmjogpsnbujpo 3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz  ricoh presented with the japan management quality award for 1999 . ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.  ricoh awarded iso 14001 certification. the ricoh group was awarded iso 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. our current aim is to obtain iso 14001 certification for all of our business offices. ricoh completed the organization of the lead-free production for all of our products. after apr. 1, 2006, we will ship out the lead free products only. thus, all products that will be shipped from now on comply with rohs directive.


▲Up To Search▲   

 
Price & Availability of RP502Z264B-E2-F

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X